Visión general
Los proveedores de servicios (CSP) se enfrentan a la presión de reducir los costes y maximizar los ingresos medios por usuario (ARPU), al tiempo que garantizan una excelente experiencia al cliente, pero los volúmenes de datos siguen creciendo. El tráfico global de datos móviles crecerá a una tasa de crecimiento anual compuesta (CAGR) del 78 por ciento hasta 2016, alcanzando los 10,8 exabytes por mes.
Mientras tanto, los CSP están generando grandes volúmenes de datos, incluidos los registros detallados de llamadas (CDR), los datos de red y los datos de los clientes. Las empresas que explotan al máximo estos datos obtienen una ventaja competitiva. Según una encuesta reciente de The Economist Intelligence Unit, las empresas que utilizan la toma de decisiones dirigida por datos disfrutan de un aumento del 5-6% en la productividad. Sin embargo, el 53% de las empresas aprovechan solo la mitad de sus valiosos datos, y una cuarta parte de los encuestados señaló que grandes cantidades de datos útiles no se explotan. Los volúmenes de datos son tan altos que el análisis manual es imposible, y la mayoría de los sistemas de software heredados no pueden seguir el ritmo, lo que hace que los datos valiosos se descarten o se ignoren.
Con el software de big data escalable y de alta velocidad de Big Data & Analytics, los CSP pueden extraer todos sus datos para una mejor toma de decisiones en menos tiempo. Los diferentes productos y técnicas de Big Data proporcionan una plataforma de software de extremo a extremo para recopilar, preparar, analizar y presentar información a partir de Big Data. Las áreas de aplicación incluyen el monitoreo del rendimiento de la red, la detección de fraudes, la detección de pérdida de clientes y el análisis de riesgo crediticio. Los productos de Big Data y Analytics se escalan para manejar terabytes de datos, pero la implementación de tales herramientas necesita un nuevo tipo de sistema de base de datos basado en la nube como Hadoop o un procesador de computación paralela a escala masiva (KPU, etc.)
Este curso sobre Big Data BI para telecomunicaciones cubre todas las nuevas áreas emergentes en las que los CSP están invirtiendo para aumentar la productividad y abrir nuevas fuentes de ingresos comerciales. El curso proporcionará una visión completa de 360 grados de Big Data BI en Telco para que los responsables de la toma de decisiones y los gerentes puedan tener una visión general muy amplia y completa de las posibilidades de Big Data BI en Telco para la productividad y el aumento de ingresos.
Objetivos del curso
El objetivo principal del curso es introducir nuevas técnicas de inteligencia de negocio Big Data en 4 sectores de Telecom Negocio (Marketing/Ventas, Operación de Red, Operación Financiera y Gestión de Relaciones con el Cliente). A los estudiantes se les presentará lo siguiente:
- Introducción al Big Data: qué son las 4V (volumen, velocidad, variedad y veracidad) en Big Data: generación, extracción y gestión desde la perspectiva de las telecomunicaciones
- En qué se diferencia el análisis de Big Data del análisis de datos heredado
- Justificación interna de la perspectiva Big Data -Telco
- Introducción al ecosistema de Hadoop: familiaridad con todas las herramientas de Hadoop como Hive, Pig, SPARC: cuándo y cómo se utilizan para resolver problemas de Big Data.
- Cómo se extrae Big Data para analizarlo para la herramienta de análisis: cómo los análisis de negocios pueden reducir sus puntos débiles de recopilación y análisis de datos a través del enfoque integrado del panel de control de Hadoop
- Introducción básica de la analítica de Insight, la analítica de visualización y la analítica predictiva para las empresas de telecomunicaciones
- Análisis de pérdida de clientes y Big Data: cómo el análisis de Big Data puede reducir la pérdida de clientes y la insatisfacción de los clientes en los estudios de casos de telecomunicaciones
- Análisis de fallos de red y fallos de servicio a partir de metadatos de red e IPDR
- Análisis financiero: estimación de fraude, desperdicio y ROI a partir de datos operativos y de ventas
- Problema de adquisición de clientes: marketing objetivo, segmentación de clientes y venta cruzada a partir de datos de ventas
- Introducción y resumen de todos los productos analíticos de Big Data y dónde encajan en el espacio analítico de las telecomunicaciones
- Conclusión: cómo adoptar un enfoque paso a paso para introducir Big Data Business Intelligence en su organización
Público objetivo
- Operación de redes, gerentes financieros, gerentes de CRM y altos gerentes de TI en la oficina de CIO de telecomunicaciones.
- Business Analistas de telecomunicaciones
- Gerentes/analistas de la oficina del CFO
- Gerentes de operaciones
- Gerentes de control de calidad
Leer más...