
Los cursos de capacitación locales en vivo dirigidos por un instructor de TensorFlow demuestran a través de la discusión interactiva y la práctica práctica cómo usar el sistema TensorFlow para facilitar la investigación en el aprendizaje automático y hacer que la transición del prototipo de investigación al sistema de producción sea rápida y fácil. TensorFlow entrenamiento TensorFlow está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo a distancia". La capacitación en vivo en el lugar puede llevarse a cabo localmente en las instalaciones del cliente en Uruguay o en los centros de formación corporativa de NobleProg en Uruguay . El entrenamiento remoto en vivo se lleva a cabo a través de un escritorio remoto interactivo. NobleProg: su proveedor de capacitación local
Machine Translated
Testimonios
Realmente aprecié las respuestas claras y claras de Chris a nuestras preguntas.
Léo Dubus
Curso: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
En general, disfruté el entrenador experto.
Sridhar Voorakkara
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me sorprendió el estándar de esta clase, diría que era el estándar de la universidad.
David Relihan
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Muy buena visión general. Go fondo desde Tensorflow por qué funciona como lo hace.
Kieran Conboy
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me gustaron las oportunidades de hacer preguntas y obtener explicaciones más profundas de la teoría.
Sharon Ruane
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Enfoque muy actualizado o CPI (tensor flow, era, learn) para hacer aprendizaje automático.
Paul Lee
Curso: TensorFlow for Image Recognition
Machine Translated
Dada la perspectiva de la tecnología: qué tecnología / proceso podría ser más importante en el futuro; mira, para qué se puede usar la tecnología.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me beneficié de la selección del tema. Estilo de entrenamiento Practica la orientación.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Una amplia gama de temas cubiertos y un conocimiento sustancial de los líderes.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
falta
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Grandes conocimientos teóricos y prácticos de los profesores. La comunicatividad de los formadores. Durante el curso, podrías hacer preguntas y obtener respuestas satisfactorias.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Parte práctica, donde implementamos algoritmos. Esto permitió una mejor comprensión del tema.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios y ejemplos implementados en ellos.
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejemplos y temas discutidos.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Conocimiento sustantivo, compromiso, una forma apasionada de transferir conocimiento. Ejemplos prácticos después de una conferencia teórica.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios prácticos preparados por el Sr. Maciej.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Detección de punto malo de identificación humana y placa de circuito
王 春柱 - 中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Demostrar
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Sobre el área de la cara.
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Muchos consejos prácticos.
Pawel Dawidowski - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Mucha información relacionada con la implementación de soluciones.
Michał Smolana - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Una multitud de consejos prácticos y conocimientos del profesor de una amplia gama de temas de AI / IT / SQL / IoT.
ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Comencé con un conocimiento cercano a cero, y al final pude construir y entrenar mis propias redes.
Huawei Technologies Duesseldorf GmbH
Curso: TensorFlow for Image Recognition
Machine Translated
Tomasz realmente conoce bien la información y el curso estaba bien ritmo.
Raju Krishnamurthy - Google
Curso: TensorFlow Extended (TFX)
Machine Translated
Algunos de nuestros clientes


















.jpg)

















.png)
.jpg)








.jpg)



Programas de los cursos TensorFlow
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow.
Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros).
Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural.
Audiencia
Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow.
Después de completar este curso, los delegados:
Entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aprovechar las innovaciones en los procesadores de TPU para maximizar el rendimiento de sus propias aplicaciones de inteligencia artificial.
Al final de la capacitación, los participantes podrán:
- Entrenar varios tipos de redes neuronales en grandes cantidades de datos
- Use TPU para acelerar el proceso de inferencia hasta en dos órdenes de magnitud
- Utilice TPU para procesar aplicaciones intensivas, como búsqueda de imágenes, visión en la nube y fotos
Audiencia
- Desarrolladores
- Investigadores
- Ingenieros
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.
By the end of this training, participants will be able to:
- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Audiencia
Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para los propósitos de reconocimiento de imágenes
Después de completar este curso, los delegados podrán:
- entender la estructura y los mecanismos de despliegue de TensorFlow
- llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- evaluar la calidad del código, realizar depuración, monitoreo
- implementar la producción avanzada como modelos de formación, creación de gráficos y registro
Audiencia
Este curso está dirigido a ingenieros que buscan usar TensorFlow para sus proyectos de Aprendizaje Profundo
Después de completar este curso, los delegados:
- entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar producción avanzada como los modelos de entrenamiento, la construcción de gráficos y registro
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.
Al final de esta capacitación, los participantes podrán:
- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.
By the end of this training, participants will be able to:
- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar las bibliotecas de Python para el procesamiento de lenguaje natural (NLP) mientras crean una aplicación que procesa un conjunto de imágenes y genera leyendas.
Al final de esta capacitación, los participantes podrán:
- Diseño y código DL para NLP utilizando bibliotecas Python
- Crear código de Python que lea una gran colección de imágenes y genere palabras clave
- Crear código Python que genere subtítulos de las palabras clave detectadas
Audiencia
- Programadores con interés en la lingüística
- Programadores que buscan una comprensión de NLP (procesamiento de lenguaje natural)
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.
By the end of this training, participants will be able to:
- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.
By the end of this training, participants will be able to:
- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Esta capacitación en vivo dirigida por un instructor (en el sitio o remota) está dirigida a desarrolladores y científicos de datos que desean usar Tensorflow 2.0 para construir predictores, clasificadores, modelos generativos, redes neuronales, etc.
Al final de esta capacitación, los participantes podrán:
- Instale y configure TensorFlow 2.0.
- Comprenda los beneficios de TensorFlow 2.0 sobre las versiones anteriores.
- Construir modelos de aprendizaje profundo.
- Implemente un clasificador de imagen avanzado.
- Implemente un modelo de aprendizaje profundo en la nube, dispositivos móviles e IoT.
Formato del curso
- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de personalización del curso
- Para solicitar una capacitación personalizada para este curso, contáctenos para organizarlo.
- Para obtener más información sobre TensorFlow , visite: https://www.tensorflow.org/
Este entrenamiento se enfoca más en los fundamentos, pero lo ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. Los ejemplos están hechos en TensorFlow.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.
By the end of this training, participants will be able to:
- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Esta capacitación en vivo dirigida por un instructor presenta los conceptos detrás de Embedding Projector y guía a los participantes a través de la configuración de un proyecto de demostración.
Al final de esta capacitación, los participantes podrán:
- Explore cómo los datos se interpretan mediante modelos de aprendizaje automático
- Navegue a través de vistas 3D y 2D de datos para comprender cómo lo interpreta un algoritmo de aprendizaje automático
- Comprenda los conceptos detrás de Embeddings y su papel en la representación de vectores matemáticos para imágenes, palabras y números.
- Explore las propiedades de una incrustación específica para comprender el comportamiento de un modelo
- Aplicar Embedding Project a casos de uso del mundo real, como crear un sistema de recomendación de canciones para amantes de la música
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Este curso es adecuado para los investigadores e ingenieros de Deep Learning interesados en utilizar las herramientas disponibles (en su mayoría de código abierto) para analizar imágenes de computadora
Este curso proporciona ejemplos prácticos.
Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.
Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.
Audiencia
Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.
Después de completar este curso, los delegados:
- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro
No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.
La duración del curso completo será de alrededor de 70 horas y no de 35 horas.